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The batched Kalman filter works well for a wide variety of orbit determination scenarios but requires lin-
earized approximations to the underlying dynamical system. Furthermore, implementation depends on the
computation of partial derivatives for all measurements and parameters used in the filter, a non-trivial task
even when analytical derivations are possible. To address these limitations, many extensions and modifi-
cations to the linear Kalman filter have been proposed over the years since Kalman’s initial publication.
Our investigation examines two popular variants of the Kalman filter, namely the Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF), within the context of spacecraft missions to Mars. The EKF
relies on the same mathematical basis as the classic version of the filter, however it sequentially updates
the linearization as the filtering process is conducted. In contrast, the UKF is built upon the unscented
transform which samples the nearby solution space and numerically propagates perturbed trajectories as
part of the update / estimation process. We assess the performance of the filtering algorithms under a
variety of mission scenarios with the goal of establishing decision criteria for which implementation to use
under differing circumstances.

I. Introduction

Orbit determination, or the process of turning in-
direct measurements of a spacecraft’s motion into an
updated understanding its state and the associated
uncertainties, is one of the key operational require-
ments for deep space exploration. Since its initial
publication in 1960, the linear Kalman filter1 has
grown to be the main orbit determination algorithm
for companies and space agencies across the world
and has proven its versatility in supporting plane-
tary exploration across the solar system. In partic-
ular, the batched variant wherein all measurements
are processed simultaneously rather than sequentially
has become an embedded part of most operational
spaceflight missions. Indeed, it is hard to overstate
the importance and utility of the Kalman filter to
many applications across the aerospace industry.2–4

However, the traditional Kalman filter has two key
requirements: (i) the system considered must be suf-
ficiently close to linear; and, (ii) partial derivatives
of the states and measurements must be derived and
integrated along with the equations of motion. To
address the first deficiency, methods of linearizing or-
bital motion relative to a reference path are usually
employed. Since these linearizations degrade in ac-
curacy over time, navigators have implemented work
flows wherein spacecraft state estimates are updated

on a rolling basis as new tracking passes are con-
ducted. A popular modification of the traditional
linear Kalman filter (LKF) to nonlinear systems is
the extended Kalman filter (EKF), though most ap-
plications make use of the sequential version wherein
measurements are processed into updated estimates
as the measurement arrive.5 While often used for
spaceflight applications, the sequential EKF presents
additional challenges when trying to estimate short-
duration events such as maneuvers, at least when con-
tinuous tracking is not assumed. Furthermore, the
EKF still relies on the provision of state and mea-
surement partials to the estimation program.

Over the past few decades, alternatives to the
Kalman filter have been gaining in popularity, both in
academic research and in industrial applications; two
exemplars of this trend are the particle filter6 and
the unscented Kalman filter (UKF).7–9 These more
modern filters have the notable benefit that they do
not require the use of partial derivatives or the state
transition matrix, however this comes at the cost of
an increased computational overhead because virtual
particles must be propagated alongside the main mo-
tion of interest. This trade-off limited the use of these
classes of filters until the common availability of par-
allel computing capabilities such as multiple cores,
dedicated clusters, GPUs, and cloud computing; now,
however, the UKF and other filters are gaining in
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popularity across a variety of industries. Within the
field of spaceflight, the UKF has been variously ex-
amined for use in: space-object tracking;10 covariance
assessment11 and real-time orbit determination12 us-
ing GPS signals; formation flying relative position-
ing;13 optical navigation for rendezvous14 and small
body exploration;15 and lunar as well as planetary
exploration.16 However, all of these investigations
focused on use of the sequential UKF, a useful imple-
mentation for real-time applications such as on-board
autonomy but not strictly required for ground-in-the-
loop operations.

In our investigation, we apply batch versions of
the LKF,4 EKF,17 and UKF18 to robotic spaceflight
missions to Mars. Our goal is to determine what per-
formance gains, if any, can come from use the batched
EKF or UKF and what operational scenarios might
be enabled by these newer filter methods. We con-
sider different phases of a potential Mars mission,
from approach to the Mars system from interplan-
etary space down to operations in a low Mars orbit.
For the moment, we assume human-in-the-loop op-
eration, so we assess the filter performance terms of
resources that would be available on the ground. In
addition to updating the spacecraft state, we have
also modified the batch UKF to enable estimation
of the state uncertainty over time, with a particular
emphasis on forward predictions of the covariance el-
lipsoids. To simplify our analysis, we have included
only use of the two-way Doppler radiometric mea-
surements, though other measurement types could be
readily included. We performed all trajectory and
navigation simulations using JPL’s Mission Analy-
sis, Operations, and Navigation Toolkit Environment
(MONTE);19 planetary ephemerides are provided by
JPL’s HORIZONS database.20

II. Mathematical Formulations

We begin by describing the mathematical basis for
the various Kalman filtering algorithms and their im-
plementation as batch-filtering methods for orbit de-
termination. We omit mathematical derivations of
orbital mechanics and the Doppler measurement type
since many other sources provide detailed examina-
tions of these topics.21–23 The goal of orbit determi-
nation is to update estimates of a set ofM parameters
x subject to the dynamical equation

xk+1 = f(xk,wk, tk) [1]

where f describes the system dynamics, xk repre-
sents the parameter values at reference epoch tk, and
wk is the unmodeled process noise. Note that the

parameter vector x can contain both dynamic (time-
varying) and bias (time-invariant) parameters. For
example, position and velocity are always included
as dynamic parameters, while maneuvers, spacecraft
shapes, and gravitational models are often included
as bias parameters. By definition, the time deriva-
tives of bias parameters are zero; for bias terms that
may change over time but for which we can’t ade-
quately model all components of the dynamics (e.g.,
solar radiation pressure, atmospheric drag), the stan-
dard practice is to include stochastic bias terms over
shorter segments of the trajectory. The parameter
vector xk has a corresponding covariance Pk, where
estimates of both are updated according to the mea-
surement set

yk = h(xk, tk) + vk [2]

where the vector yk is a collection of N measure-
ments taken over the interval t1 ≤ t ≤ tN , h rep-
resents the mapping of parameters to measurements
either through computation or observation and vk

is the measurement noise. The noises wk and vk

are usually assumed to be uncorrelated, zero-mean
Gaussian distributions with the respective covari-
ances E{wkwT

k } = Qk and E{vkvT
k } = Rk. Note

that the general formulation, as currently posed, per-
mits nonlinear and even discontinuous dynamic terms
f and measurements h, however practical filter im-
plementation often poses stricter requirements.

II.i Linear Kalman Filter (LKF)

In this section, we present the mathematical op-
erations composing the batch linear Kalman filter
(LKF), also known as the linear least squares esti-
mator; we follow the derivation in Ch. 4.4 of Statis-
tical Orbit Determination.4 The batch LKF assumes
linear mapping in the parameters xk from the refer-
ence epoch tk. That is, the LKF assumes that the
dynamics represented by Eq. [1] can be linearized to

δẋk = Fkδxk + wk [3]

and the measurements in Eq. [2] are likewise lin-
earized as

δyk = Hkδxk + vk [4]

where Fk and Hk are the partial derivatives of the
dynamic and measurement mappings with respect to
the parameters x. The term δxk denotes a variation
from the reference set of parameters. For problems
in orbit determination, satisfying the assumption of
linearity necessitates at least one of three criteria be
met:
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• the variation δxk is sufficiently small;

• the time spans [tk, tk+1] and [t1, tN ] are suffi-
ciently small and overlapping; or,

• the dynamics are relatively uniform, e.g., the
spacecraft is far from any gravitating bodies or
other non-uniform perturbations.

As a practical matter, some combination of all three
is usually imposed, depending on the exact cir-
cumstances; balancing these three considerations in
spaceflight operations is as much art as science.

The batch LKF processes the complete set of N
observed measurements ỹk in order to update the
parameter estimates x̂k through an iterative process.
The parameter update is given by

x̂+
k = K−1

(
HT

k R
−1
k ∆ỹk + (P−

k )−1x̂−
k

)
[5]

where the superscripts (−,+) indicate pre- and post-
update, respectively, and ∆ỹk = ỹk − ŷ−

k is the
measurement residual (the difference between the
observed measurements ỹk and simulated measure-
ments ŷ−

k ). The Kalman gain K is computed via

K = HT
k R

−1
k Hk + (P−

k )−1 [6]

and the a posteriori covariance estimate is calculated
as

P+
k = K−1. [7]

The measurement set is processed by summing over
the individual measurements via

HT
k R

−1
k Hk =

N∑
i=1

(HiΦi,k)TR−1
i (HiΦi,k) [8]

and

HT
k R

−1
k ∆ỹk =

N∑
i=1

(HiΦi,k)TR−1
i ∆ỹi [9]

where the subscript i indicates the time ti as well
as its associated measurement while Φi,k is the state
transition matrix mapping variations in xk to cor-
responding changes in xi. In the batch LKF, all
measurements are processed with respect to the esti-
mated parameters at the singular reference epoch tk,
hindering the continued assumption of linearity and
omitting higher order terms that may grow large over
time. In addition, we are required to somehow derive
and/or compute the partial derivatives of both the
measurements and the parameters themselves. Fi-
nally, we note that the inversion of the Kalman gain is

an unstable operation, leading to the common usage
of UDU decompositions or square-root information
formulations.24

Before proceeding to the other filtering methods,
we wish to make a brief comment on stochastic bias
parameters, even though we do not explicitly include
them in this investigation. These variables are usu-
ally modeled as piecewise time series’ applied over the
course of the baseline trajectory: the total time span
is divided into sub-intervals in which the stochastic
parameter can take on different values within the dif-
ferent time bins. The LKF traditionally addresses
these cases by adjusting the covariance of the stochas-
tic parameters at the batch boundary using a va-
riety of different noise models (random bias, white
noise, random walk, etc.) which can either assume
independence or correlation between the discrete sub-
intervals. A smoothing process is then applied to map
estimates across the full span of the trajectory (for
more information, see Ch. 4.15 of Statistical Orbit
Determination).4

II.ii Extended Kalman Filter (EKF)

The batch extended Kalman filter (EKF) is mathe-
matically identical to the batch LKF, except that the
full measurement set is partitioned into sub-batches
which are processed in sequence, as illustrated in
Fig. 1.17 At each subset boundary, the parameter set

Fig. 1: Schema of EKF partitioning of full measure-
ment set into smaller partitions.

is updated and reinitialized to x̂p and Pp, where the
subscript indicates the epoch tp defining the partition
between sub-batches. The motion is again linearized
as in Eq. [3], but with respect to the intermediate
epoch tp, in preparation for processing the next sub-
set of measurements. The process is analogous to the
more common sequential EKF, though the sequen-
tial version processes measurements individually and
updates the linearized reference motion at each mea-
surement epoch. Once the complete batch of mea-
surements is processed (i.e., all subsets are handled),
the filtered solution is re-mapped to the epoch tk
and the entire process can be iterated as appropri-
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ate. Stochastic parameters can be readily incorpo-
rated into the EKF using the same methods as the
LKF, but as a practical manner the boundaries of
the measurement and stochastic sub-batches should
be aligned whenever possible. We note that, concep-
tually, the standard orbit determination workflow im-
plicitly operates as a large-scale batch EKF wherein
the long-term trajectory is split into segments and the
spacecraft state and other parameters are estimated
episodically.

II.iii Unscented Kalman Filter (UKF)

We now turn to the batch unscented Kalman fil-
ter (UKF) which exploits the unscented transform.
Our formulation follows that of Park et al.,18 though
we extend the mathematical basis to include updated
estimates of the parameter covariances if so desired
and we use a different weighting scheme. We begin
by initializing a symmetric set of sigma points χ̄j,k

for j = 1, . . . ,M (recall that M is the number of
parameters in xk):

χ̄0,k = x̂k

χ̄j,k = x̂k + α

√
M

1−W (0)
(P

1/2
k )col j (10)

χ̄j+M,k = x̂k − α
√

M

1−W (0)
(P

1/2
k )col j

where α ≤ 1 is a weighting parameter, W (0) is the
weight of the base point (typically set to 0), and

(P
1/2
k )col j is the jth column of the Cholesky decom-

position of the covariance matrix. Unless otherwise
noted, this investigation uses a value of α = 5× 10−3

for all UKF runs. A corresponding set of sigma
weights are calculated as

W (0)
s =

W (0) + α2 − 1

α2

W (j)
s =

1−W (0)

2Mα2
(11)

where all weights sum to one. All 2M+1 sigma points
are then independently propagated across all mea-
surement epochs and estimated measurements are
computed for each sigma point as

γ̃j,k = h̃(χ̄j,k) =

 h(χ̄j,1, t1)
...

h(χ̄j,N , tN )

 [12]

for j = 0, . . . , 2M and i = 1, . . . , N . The propagation
of the sigma points and computation of the estimated
measurement batches is readily parallelized for com-
putational efficiency, though we have not done so in

this investigation. However, note that the number of
operations in the UKF (2M + 1 propagations of M
parameters only) is of same order of magnitude as
the LKF and EKF (propagation of both M parame-
ters and M2 partials), so the computational speed of
a properly parallelized UKF approaches that of the
standard LKF / EKF. Furthermore,

Once the sigma points and their associated mea-
surement sets are calculated, they are combined to
form estimates of the true measurements and the as-
sociated covariances. The predicted measurement is
given by

ȳk =

2M∑
j=0

W (j)
s γ̃j,k [13]

while the measurement covariance matrix is

P̄ yy
k =

2M∑
j=0

W (j)
s (γ̃j,k − ȳk)(γ̃j,k − ȳk)T +Rk [14]

where we recall that Rk is the uncorrelated measure-
ment noise matrix. The parameter / measurement
cross-correlation matrix is calculated

P̄ xy
k =

2M∑
j=0

W (j)
s (χ̄j,k − x̂k)(γ̃j,k − ȳk)T . [15]

The Kalman gain for the batch UKF is given by

Kk = P̄ xy
k (P̄ yy

k )−1 [16]

though as a computational matter the inversion is
still unstable, so in practice LU-decompositions or
least-squares equation solvers are used. The param-
eter estimate is updated by

x̂+
k = x̂−

k +Kk∆ỹk [17]

where the measurement residual is ∆ỹk = ỹk − ȳk.
As with the batch versions of the LKF and EKF, the
whole process is iterated until convergence on a sta-
ble estimate or the measurement residuals assume a
zero mean distribution. Note the advantage that the
UKF does not rely on explicit derivation or compu-
tation of the parameter and measurement partials;
because of this, discontinuities and non-smooth cases
are easily handled without need for extensive modifi-
cation. Furthermore, stochastic parameters are read-
ily handled by including the full stochastic time series
as a set of independent parameters with appropriate
covariances defined for cross- and uncorrelated noise
models. This does necessarily increase the size of the
problem and the number of required sigma points,

IAC–17–C1,4,2,x41662 Page 4 of 12



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by California Institute of Technology.
Government sponsorship acknowledged. All rights reserved.

however this can be mitigated to some extend by the
parallelization.

The UKF can also update the parameter uncer-
tainty or map it to another epoch tk+1 so long as the
sigma point propagations extend to cover said epoch.
The estimated parameters at the epoch tk+1 are cal-
culated via

x̄k+1 =

2M∑
j=0

W (j)
s χ̄j,k+1 [18]

with a priori parameter covariance

P̄−
k+1 =

2M∑
j=0

W (j)
s (χ̄j,k+1 − x̂k+1)(χ̄j,k+1 − x̂k+1)T

+Qk+1 [19]

where Qk+1 is the small, uncorrelated process noise.
The measurement data and covariance are computed
as before, but now the cross-correlation matrix is
computed with respect to the mapping epoch tk+1:

P̄ xy
k+1 =

2M∑
j=0

W (j)
s (χ̄j,k+1 − x̂k+1)(γ̃j,k − ȳk)T . [20]

The mapping Kalman gain is computed as in Eq. [16]

Kk+1 = P̄ xy
k+1(P̄ yy

k )−1 [21]

where again an LU / least squares approach must be
used. The a posteriori parameter covariance is then
given by

P̄+
k+1 = P̄−

k+1 −Kk+1P̄
xy
k+1. [22]

This parameter / covariance mapping is not strictly
required for the operation of the UKF and can there-
fore be performed as a post-processing step after the
filter solution has been iterated to convergence. Note
also that the UKF assumes Gaussian distributions
for the sigma points, measurement estimates, and all
covariances; while it accurately captures means and
normal distribution values, higher order information
is still lost.

III. Mars Approach

The first use case we examine is approach to Mars
from deep space, either for orbit insertion or entry
and landing. We first pose the simulation conditions
then discuss results for two different scenarios defined
by their initial epoch prior to Mars entry, E−45 and
E− 5 days. The only measurement type used is two-
way Doppler tracking which is assumed to be supplied
by the Deep Space Network (DSN).

III.i Simulation Set-Up

To assess the performance of the different filter im-
plementations, we include a mix of bias parameters in
addition to the dynamic state (position and velocity).
In terms of spacecraft operations, we wish to estimate
maneuver errors, the effect of solar radiation pressure
(modeling the spacecraft as a sphere with nominal
radius 1.5 m), uncertainty in the gravitational pa-
rameters of massive bodies (Sun, Mars, Earth), and
errors in the location of ground tracking stations, as
summarized in Table 1. Note that we present uncer-
tainties in the gravitational parameters as fractions of
their nominal value. The nominal states and maneu-

Table 1: Errors for Mars approach, all values 1-σ.

Parameter Error Units

Maneuver component 1.0 cm/s
SC radius 5 cm
Sun, Mars, & Earth µ 1e-9 –
Ground station position 1.0 cm
Two-way Doppler noise 5.62×10−3 Hz

vers for the two different initial epochs are presented
in Table 2, where all components are expressed in
J2000 coordinates. We consider a variety of tracking

Table 2: Nominal states & maneuvers, Mars ap-
proach

Parameter Values Units

E − 5 days
Position (2.01e8, 6.13e7, 2.26e7) km
Velocity (-5.41, 20.20, 9.60) km/s
State epoch 21-NOV-2018 19:41:00 ET –
Burn (2, 1, -3) cm/s
Burn epoch 24-NOV-2018 21:41:00 ET –

E − 45 days
Position (2.02e8, -1.17e7, -1.15e7) km
Velocity (5.13, 21.47, 9.87) km/s
State epoch 12-OCT-2018 19:41:00 ET –
Burn (20, -10, 50) cm/s
Burn epoch 10-NOV-2018 18:01:00 ET –

schedules and initial errors in the position and veloc-
ity; while not all possible combinations are explored,
the cases we consider include:

• tracking pass lengths of 2-, 4-, and 6-hours;

• tracking passes every 1-, 3-, and 7-days;

• position errors ranging from 50- to 1000-km;
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• velocity errors ranging from 50-cm/s to 10-m/s.

For all cases, the initial parameter covariances P are
diagonal matrices whose non-zero elements are set
equal to the squares of the 1-σ error values. When
using the EKF, the tracking schedules are divided
into 60-measurement sub-batches.

III.ii Results: E-45 days

We begin by analyzing the approach case where
the spacecraft is 45 days away from Mars entry; mea-
surements are taken over a span of 32 days with the
goal of gaining an improved estimate of the space-
craft state prior to final approach. For this case we
expect relatively benign dynamics up to the final few
days, therefore the assumption of linearity will likely
be valid along most of the reference path. We ex-
amine several different tracking strategies for a sce-
nario where the spacecraft initial state is randomly
perturbed in position and velocity with 1-σ values of
100 km and 1 m/s in each direction. The results for
the LKF, EKF, and UKF are tabulated in Tables 3
and 4, where an empty line indicates failure to con-
verge. We introduce errors in the initial state and
velocity, the maneuver execution, as well as the pa-
rameters listed in Table 1; while we only report the
converged RMS position error in the initial state, we
do actively estimate all parameters.

Table 3: Results for approach E-45 days, varying
pass length; initial pos. error 100-km, initial vel.
error 1-m/s, tracking pass every 3 days.

Pass Pos. Err. Time per
Dur. (km, RMS) Iter. iter. (s)

Linear
2 hrs 84.6 9* 0.7
4 hrs 71.2 9* 1.1
6 hrs 48.7 8* 1.4

Extended
2 hrs 57.6 3* 0.9
4 hrs 39.9 4 1.5
6 hrs 15.8 5 2.1

Unscented
2 hrs 55.3 5 8.6
4 hrs 14.4 3 19.7
6 hrs 9.6 3 39.4
*Case exhibits ’decaying walk’

In general, we see that the EKF and UKF outper-
form the LKF when the length of the tracking passes
is varied (Table 3); the outcome is more mixed when

Table 4: Results for approach E-45 days, varying in-
tervals between passes; initial pos. error 100-km,
initial vel. error 1-m/s, pass duration 4-hrs.

Pass Pos. Err. Time per
Intv. (km, RMS) Iter. iter. (s)

Linear
7 days – – –
3 days 21.4 4 1.0
1 day 18.3 1* 2.3

Extended
7 days 36.1 9 0.9
3 days 26.6 6 1.5
1 day 6.7 2* 3.6

Unscented
7 days 18.9 9 9.2
3 days 24.3 4 19.8
1 day 22.4 2 176.3
*Case exhibits ’decaying walk’

considering the frequency of tracking (Table 4). Note
that each case in Table 3 uses the same initial pertur-
bation, while the cases in Table 4 also share a com-
mon initial condition that is different from the case
in Table 3. The EKF and UKF are both able to con-
verge when tracking occurs only once every 7 days,
while the LKF does not. However, when it does con-
verge, the LKF outperforms the UKF for this par-
ticular set of parameters perturbations. Note also
that the computation times reported for the UKF
are without parallelization.

Some cases do exhibit a phenomenon we term a
“decaying walk”, that is, after reaching their low-
est error value they begin steadily increasing in er-
ror while approaching some asymptotic limit. The
magnitude of this limit seems to be correlated with
the extent of tracking data available, perhaps related
to a fundamental limit on the information content of
those measurements.25 To examine this behavior in
more detail, we chart the per-iteration performance
of a single case in Fig. 2, where this case case deliber-
ately selected because it exhibits another interesting
behavior sometimes exhibited by the batch UKF /
EKF. This “jitter” occurs after convergence of the
filter, where the RMS error increases then returns
again to a lower level. Note that this behavior is not
necessarily intrinsic to the UKF / EKF but could in-
stead be caused by other factors in the simulation;
more investigation is required to determine how this
jitter could be mitigated, when it appears at all. Note
that not all cases exhibit the phenomena illustrated
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Fig. 2: Sample iteration histories for approach E-45
days; initial pos. error 100-km, initial vel. error
1-m/s, 4-hr tracking pass every 3 days.

in Fig. 2, but operators should be wary to spot them
as they occur.

We now examine the performance of the batch fil-
ters subject to differing errors in the initial state, from
large disturbances characteristic of worst-case upset
recoveries down to error levels expected for routine
operation. Results for the three filters are presented
in Table 5; interestingly, the LKF and EKF exhib-
ited instability for the smallest error case but the
UKF was able to successfully converge. Note also
that the LKF again exhibited a tendency to “walk”
for this nominal approach case. At the moment, there
seems to be no clear advantage to using the UKF or
the EKF when operations are “routine”, that is, rela-
tively frequent tracking with sufficiently long passes.
However, the two modified filters can be successfully
used for cases with sparse tracking, a potentially use-
ful feature for missions.

Before proceeding to the remaining analysis sce-
nario, we first wish to examine the ability for each fil-
ter implementation to provide forward predictions in
state uncertainty, e.g., covariance mapping. Position
uncertainty ellipsoids for a sample case are depicted
in Fig. 3, where the uncertainty is mapped forward
to shortly before entry into the Mars system. As can
be seen, the UKF provides a tighter uncertainty esti-
mate than the LKF or EKF, while the EKF seems to
perform worst of all. While is it hard to observe in
the image, the uncertainty ellipsoids do also differ in
orientation as well, though they are not wildly diver-
gent in behavior. In theory, the UKF should provide
the most accurate assessment of uncertainty, however
a rigorous Monte Carlo analysis would be needed to
confirm this assumption.

Table 5: Results for approach E-45 days, varying ini-
tial state errors; passes every 3 days, pass dura-
tion 4-hrs.

State Pos. Err. Time per
Error (km, RMS) Iter. iter. (s)

Linear
1000 km
10 m/s 63.5 2* 0.8
500 km
5 m/s 14.8 3* 1.0

100 km
1 m/s 8.4 2* 1.1
50 km

0.5 m/s – – –

Extended
1000 km
10 m/s 56.3 2* 1.2
500 km
5 m/s 13.4 7 1.5

100 km
1 m/s 15.3 8 1.5
50 km

0.5 m/s – – –

Unscented
1000 km
10 m/s 22.0 10 14.2
500 km
5 m/s 1353 40** 20.3

100 km
1 m/s 12.8 7 19.9
50 km

0.5 m/s 30.2 8 19.3
*Case exhibits ’decaying walk’

**Case reached maximum iterations

III.iii Results: E-5 days

We turn now to the case of terminal approach to
the Mars system, where our initial epoch is now 5
days prior to Martian entry. For this case, we con-
sider only the variations in filter performance due to
initial state errors. Recall that we only consider the
use of two-way Doppler measurements for the sake of
simplicity, although other measurement types such
as ranging and DDOR would also likely be used to
improve orbit determination accuracy. Regardless,
the relative performance of the different filtering al-
gorithms for this scenario are presented in Table 6.
As can be seen, the UKF is the most accurate method
by roughly a factor of 2, likely because it is able to
more effectively handle the increased nonlinear dy-
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namics due to the proximity to Mars. This opens
the possibility that entry conditions can be targeted
more precisely by switching the filtering algorithm, in
addition to the acquisition of more precise measure-
ments, as illustrated by the forward mappings shown
in Fig. 4.

Table 6: Results for approach E-5 days, varying ini-
tial state errors; passes every 2 days, pass dura-
tion 6-hrs.

State Pos. Err. Time per
Error (km, RMS) Iter. iter. (s)

Linear
500 km
5 m/s 59.4 3 0.5

100 km
1 m/s 56.7 4 0.5
50 km

0.5 m/s 60.5 4 0.5

Extended
500 km
5 m/s 57.0 4 0.8

100 km
1 m/s 58.3 4 0.8
50 km

0.5 m/s 59.1 5 0.8

Unscented
500 km
5 m/s 37.4 7 7.3

100 km
1 m/s 21.8 6 7.3
50 km

0.5 m/s 22.0 3 7.3

IV. Mars Orbit

We now consider the case when the spacecraft is
in a Mars-centered orbit; as before, we first discuss
the analysis set-up then the results for high- and low-
altitude orbits. As with the approach cases, our only
measurement type is DSN two-way Doppler tracking.

IV.i Simulation Set-Up

As with the approach case, we consider several
bias parameters in addition to the dynamic position
and velocity, as indicated in Table 7. We now omit
the gravity of Earth, but include the Martian moons
Phobos and Deimos; recall that the uncertainty in
the gravitational parameters µ is set as a fraction
of their true values. Two different orbits are con-

Fig. 3: Sample mapped covariance for approach E-45
days; initial pos. error 100-km, initial vel. error
1-m/s, 4-hr tracking pass every 3 days.

Fig. 4: Sample mapped covariance for approach E-5
days; initial pos. error 100-km, initial vel. error
1-m/s, 8-hr tracking pass every day.

Table 7: Errors for Mars orbit, all values 1-σ.

Parameter Error Units

Maneuver component 1.0 mm/s
SC radius 5 cm
Sun & Mars µ 1e-9 –
Phobos & Deimos µ 1e-4 –
Ground station position 1.0 cm
Two-way Doppler noise 5.62×10−3 Hz
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sidered, high- and low-altitude Mars orbits (HMO
and LMO, respectively), where both are polar (in-
clination ≈ 95.4◦) and nearly circular (eccentricity
≈ 0.02). For both orbits, two maneuvers are exe-
cuted at 6 hours and 12 hours after the initial epoch,
with the burns being identical for both cases; tab-
ulations of the initial states, maneuvers, and other
orbital information are contained in Table 8. Posi-
tion, velocity, and the maneuver components are all
defined with respect to the Mars inertial equatorial
reference frame. Note that the LMO is close enough
to Mars that the atmosphere and its time variations
would be a significant perturbing effect, however we
have omitted stochastic drag from our investigation
for simplicity and consistency between the HMO and
LMO scenarios. As with the approach case, we con-

Table 8: Nominal states & maneuvers, Mars orbit

Parameter Values Units

High Mars Orbit (HMO)
Position (5.14e3, 1.23e3, -5.35e3) km
Velocity (-1.58, -0.70, -1.64) km/s
State epoch 01-Apr-2018 12:00:00 ET –
Altitude 4072 km
Period 5.44 hrs

Low Mars Orbit (LMO)
Position (2.50e3, 0.60e3, -2.60e3) km
Velocity (-2.26, -1.00, -2.36) km/s
State epoch 01-Apr-2018 12:00:00 ET –
Altitude 233 km
Period 1.84 hrs

Maneuvers
Burn #1 (-1, -2, 4) cm/s
Epoch #1 01-APR-2018 18:00:00 ET –
Burn #2 (11, -1, 0) cm/s
Epoch #2 02-APR-2018 00:00:00 ET –

sider a variety of position and velocity errors as well
as tracking schemes, including:

• continuous tracking from 0.5-23.5 hours after the
initial epoch;

• 3 tracking passes within the first 24 hours but
bracketing the maneuvers, either 0.5 or 2 hours
in duration apiece, as illustrated in Fig. 5;

• position errors ranging from 10-m to 50-km;

• velocity errors ranging from 1-cm/s to 5-m/s.

While these tracking schedules may not always be
physically realizable due to occultations, we consider

them as bounding cases to explore the performance
of the different filtering schemes. For the EKF, the
measurement set is divided into subsets of 30 mea-
surements apiece.

Fig. 5: Tracking scenario for the Mars-centric orbits.

IV.ii Results: High Mars Orbit (HMO)

We first consider the filter performances when ap-
plied to the case of orbit determination when the
spacecraft is at a relatively high altitude. As can
be seen in Table 9, the UKF performs comparably
to or better than the other filters for sparser track-
ing. On the other hand, when tracking is continu-
ous or very dense, the linear filters perform better.
However, improved performance of the UKF is not

Table 9: Results for HMO, varying tracking schedule;
initial pos. error 1-km, initial vel. error 10-cm/s.

Pass Pos. Err. Time per
Dur. (m, RMS) Iter. iter. (s)

Linear
0.5 hrs 252 40** 0.9
2 hrs 232 4 1.0
Cont. 12.1 6 1.4

Extended
0.5 hrs 167 40** 1.0
2 hrs 206 2* 1.3
Cont. 12.6 3 2.2

Unscented
0.5 hrs 187 3 7.9
2 hrs 46.5 4 9.5
Cont. 21.5 9 16.0
*Case exhibits ’decaying walk’

**Case reached maximum iterations

always guaranteed, as we see when considering the
results of various initial perturbations as highlighted
in Table 10. While the UKF is able to converge for
larger initial errors, there are cases where the EKF
and even the LKF can offer more accurate estimates
of the true state. This inconsistent pattern of per-
formance could be partially related to the underlying
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spacecraft motion: while the orbit is Mars-centric, it
is also high altitude with relatively long period so it
is not dramatically nonlinear. Finally, we also exam-

Table 10: Results for HMO, varying initial state er-
rors; pass duration 2-hrs.

State Pos. Err. Time per
Error (m, RMS) Iter. iter. (s)

Linear
50 km
5 m/s – – –
10 km
1 m/s – – –
1 km

10 cm/s 0.6 21 1.0
100 m
5 cm/s 95.0 2* 1.0

Extended
50 km
5 m/s – – –
10 km
1 m/s 272 40** 1.6
1 km

10 cm/s 0.4 9 1.6
100 m
5 cm/s 23.4 4* 1.6

Unscented
50 km
5 m/s 31.5 9 9.3
10 km
1 m/s 632 10 9.6
1 km

10 cm/s 66.2 6 9.4
100 m
5 cm/s 144 3* 9.2
*Case exhibits ’decaying walk’

**Case reached maximum iterations

ine the forward mapping of uncertainty, in this case
two days forward from the initial epoch. Shown in
Fig. 6, the uncertainty ellipses exhibit characteristic
elongation in the along-track direction, though no-
tably the UKF primary axis is roughly half that of
the EKF/LKF. On the other hand, the intermediate
and minimum axes are slightly larger for the UKF.

IV.iii Results: Low Mars Orbit (LMO)

Finally, we examine the scenario where the space-
craft is in low Mars orbit, with results summarized
in Tables 11 and 12. In this case, the UKF performs
comparably to or better than the other filters and

Fig. 6: Sample mapped covariance for HMO; initial
pos. error 1-km, initial vel. error 10-cm/s, 2-hr
tracking passes.

again exhibits more robustness to initial errors. As
noted before, these performance characteristics of the
UKF could be exploited when tracking is expected to
be sparse as well as during recovery from spacecraft
upsets or safe modes. We also note that, in contrast
to previous cases, the UKF now predicts larger uncer-
tainties in forward predictions, as illustrated in Fig. 7.
The majority of this increase is directed radially and
in the cross-track direction, to the point where they
are comparable or larger than the down-track axis;
the uncertainty ellipsoids for the LKF and EKF, how-
ever, retain the traditional elongation in the velocity
direction. Whether this increased uncertainty in the
UKF results is a mathematical artifact or a true dy-
namic behavior will need to be confirmed via Monte
Carlo or other statistical analyses.

Fig. 7: Sample mapped covariance for LMO; initial
pos. error 1-km, initial vel. error 10-cm/s, 2-hr
tracking passes.
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Table 11: Results for LMO, varying tracking sched-
ule; initial pos. error 1-km, initial vel. error
10-cm/s.

Pass Pos. Err. Time per
Dur. (m, RMS) Iter. iter. (s)

Linear
0.5 hrs 40.5 3* 7.8
2 hrs 1.0 4 8.3
Cont. 0.1 5 8.4

Extended
0.5 hrs 128 3* 10.7
2 hrs 4.7 6 12.7
Cont. 0.1 4 19.6

Unscented
0.5 hrs 24.8 3 40.1
2 hrs 1.9 6 40.8
Cont. 0.5 4 47.0
*Case exhibits ’decaying walk’

Table 12: Results for LMO, varying initial state er-
rors; pass duration 2-hrs.

State Pos. Err. Time per
Error (m, RMS) Iter. iter. (s)

Linear
10 km
1 m/s – – –
1 km

10 cm/s 0.4 3 8.1
100 m
5 cm/s 1.2 4 8.7

Extended
10 km
1 m/s – – –
1 km

10 cm/s 3.5 7 12.6
100 m
5 cm/s 1.1 8 12.8

Unscented
10 km
1 m/s 6.6 5 41.5
1 km

10 cm/s 1.9 3 42.3
100 m
5 cm/s 0.6 5 41.5

V. Conclusions

In this investigation, we applied the batched linear,
extended, and unscented Kalman filters (LKF, EKF,
and UKF, respectively) to analyze robotic missions
to Mars, specifically the approach to Mars and oper-
ations while in orbit. In general, the unscented filter
outperforms the EKF and LKF when the spacecraft
motion is highly nonlinear, when large initial errors in
state are present, or when measurements are sparse.
Likewise, the EKF exhibits better convergence prop-
erties in these cases than simple linear filter. On the
other hand, for more routine cases the LKF works as
well as, and sometimes even better than, the UKF
and EKF. Thus, the LKF will usually suffice for tra-
ditional missions, however the UKF and EKF could
be highly useful during cases of upset recovery or
when tracking is expected to be limited, for example
on SmallSat missions. We observed some interesting
trends in the operations of the filters, including “de-
caying walks” and “jitter” in the position estimates;
these phenomena are not always exhibited, but oper-
ators should be aware to the possibility that they will
occur. It is possible that some of this behavior is due
to other factors in the simulation, but more investiga-
tion is required to determine the root cause. Finally,
forward covariance predictions are usually more com-
pact for the UKF than the LKF and EKF, the one
exception being low Mars orbit; assuming that the
unscented transform does in fact offer better predic-
tions of covariances, this offers interesting avenues for
improving Mars entry conditions and on-orbit opera-
tions without the need for new measurement types.

There are several interesting avenues for future
work related to the filters in general and their ap-
plication to Mars in particular. First, Monte Carlo
analyses of the uncertainty distributions are needed
to confirm the accuracy of the covariance ellipsoids.
Second, various improvements can be made to the
simulation scenarios can be made, including the mod-
eling of stochastic parameters and the ability to con-
sider biases rather than fully update them. Since the
UKF uses tuning weights and the EKF can freely set
the size of measurement sub-sets, a rigorous assess-
ment of their impact on filter performance is called
for, particularly if the UKF and EKF are to be used
in operations. Likewise, all cases assumed initial
state position and velocity errors with normal dis-
tributions and the same standard deviation in all di-
rections; modeling error distributions as ellipsoids or
other more realistic shapes would provide a higher fi-
delity assessment of filter performance. Furthermore,
we have examined the filter performance assuming
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ground processing, but assessing them in the con-
text of on-board operations could help to determine
the required computational needs for spacecraft au-
tonomy. Finally, this analysis could be expanded to
include other types of non-linear filters, for example
the particle filter.
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